亚洲性视频,日韩性爱视频在线,亚洲18色,国产XXXXXXXX

您好,歡迎進江蘇雙利合譜科技有限公司網(wǎng)站!
您現(xiàn)在的位置:首頁 >> 解決方案 >> 基于高光譜成像技術(shù)的辣椒葉片葉綠素含量估算
基于高光譜成像技術(shù)的辣椒葉片葉綠素含量估算
瀏覽次數(shù):1199發(fā)布日期:2022-08-18

安徽省農(nóng)業(yè)科學(xué)院土壤肥料研究所利用我司高光譜設(shè)備,通過高光譜成像技術(shù)研究辣椒葉片葉綠素含量與光譜之間的定量關(guān)系,為大面積、快速檢測植被葉綠素含量變化提供了可能。

此研究選取150組不同生長期的辣椒葉片作為研究對象,分別采集辣椒葉片的高光譜圖像和葉綠素含量后,進行辣椒葉片葉綠素含量定量模型的預(yù)測研究。我司高光譜成像系統(tǒng)如圖1、圖2所示。

圖片1.jpg

圖1 GaiaSoter-Dual“蓋亞"雙相機全波段高光譜分選儀

圖片2.jpg

圖2 Gaiafiled-Pro-V10E相機及參數(shù)

通過選取如圖3所示的6處具有代表性的矩形感興趣區(qū)(避開葉脈)作為樣本的原始光譜,加權(quán)平均后的光譜值作為原始光譜數(shù)據(jù)。去掉383~399 nm和950~1000 nm邊緣噪聲較大的光譜數(shù)據(jù),保留400~949 nm進行下一步研究(如圖4所示)。

圖3.辣椒葉片取樣區(qū)域

Fig3. Sampling area of pepper leaves

圖片5.jpg

圖4原始光譜曲線

Fig 4. original spectral curve

通過隨機森林算法選擇得到重要性最高的前20個波段,如圖5所示。分別為697.1 nm、932.1nm、941.9 nm、693.6 nm、857.4 nm、930.8 nm、543.4 nm、927.1 nm、803.3 nm、550.1 nm、806.9 nm、785.4 nm、704.1 nm、890.1 nm、916 nm、530 nm、533.1 nm、556.8 nm、771.1 nm、536.7 nm,從上述所選波段分布來看,主要集中于可見光波段(390~780 nm),這可能與光合作用的波段主要是可見光波段有關(guān)。

圖片6.jpg

圖5.隨機森林特征重要性

Fig 5 Importance of random forest characteristics

將經(jīng)隨機森林特征選擇算法篩選后的波段作為自變量,SPAD值作為因變量。利用線性回歸(Linear Regression, LR)、偏最小二乘回歸(Partial Least Squares Regression, PLSR)、梯度提升回歸樹(Gradient Boosting Regressor Tree, GBRT)、隨機森林回歸(Random Forest regression, RFR)分別構(gòu)建反演模型。表1為4種模型的建模效果精度對比,圖6為4種模型的驗證集驗證效果。

表1 不同算法精度對比

Table1 Accuracy comparison of different algorithms

模型Model

建模Modeling

驗證Verification

LR

0.93

1.77

1.41

0.83

2.39

1.89

PLSR

0.86

2.6

2.1

0.87

2.05

1.75

GBRT

0.99

0.54

0.42

0.87

2.06

1.7

RFR

0.97

1.29

1.05

0.90

1.87

1.43

圖片7.jpg

圖6.實測值與預(yù)測值關(guān)系

Fig 6. Relationship between measured and predicted values

研究結(jié)果表明:(1)隨機森林特征選擇算法篩選后波段構(gòu)建的模型精確度和可靠性較高,其中隨機森林回歸相對于其他回歸方法,模型精度最高,其驗證集的 R2為0.9、RMSE為1.87、MAE為1.43。說明模型具有較高的穩(wěn)定性和預(yù)測精度,可以滿足實際預(yù)測需求,其次利用隨機森林特征選擇算法很大程度上降低了模型的復(fù)雜度,從而提高了模型的預(yù)測精度和穩(wěn)定度,達到簡化模型的目的。

(2)利用隨機森林特征選擇算法篩選的波段結(jié)合隨機森林回歸可以較為穩(wěn)定的預(yù)測辣椒葉片葉綠素含量,為后期大面積檢測辣椒的生長狀況提供了理論依據(jù)。

(3)選用辣椒葉片為研究對象,但從特征波段的選擇和模型構(gòu)建來說,對于其他農(nóng)作物也具有重要的參考性,在今后的研究可以嘗試將該方法應(yīng)用到其他植被葉片。

通訊作者簡介:

葉寅,博士,安徽省農(nóng)業(yè)科學(xué)院土壤肥料研究所助理研究員。

主要研究方向:1、面源污染防治與模擬。2、景觀生態(tài)學(xué)以及土地利用/覆被變化的生態(tài)環(huán)境效應(yīng)。

 

參考文獻:袁自然,葉寅,武際,方凌,陳曉芳,楊欣.基于高光譜成像技術(shù)的辣椒葉片葉綠素含量估算[J].江蘇農(nóng)業(yè)科學(xué),2021,49(16):189-193.DOI:10.15889/j.issn.1002-1302.2021.16.035.


国产手机精品一区二区| 枣庄市| 久久久激情综合| 午夜性生活| 亚洲综合成人婷婷五月在线观看| 日韩av天天艹| 国产SUV精品一区二区69| 懂色一区二区二区av免费观看| 婷婷99| 久久久精品欧美一区| www.精品国产| 人妻的秘密| 夫妻一区| av九九| 久久久久久自慰出白浆| 91aV社区| 欧美少妇一区二区三区| 久久国产精品久久| 广西少妇无码| 爱看av| 爱爱爱| 视频精品一区| 成人在线无码免费观看| 波多野结衣av无码| 日本成人久久久一区| 亚洲AV无码一区二区二三区| 中文字幕国产免费| 性色av 一区二区三区| 亚洲无码一区二区在线| 青青草国产精品久久久久婷婷| 久久精品国产亚洲一区二区三区| 五月丁香之国产精品| 精品亚洲日韩一区二区三区| 青青草色无码在线| 久久黄色小视频| 精品久久亚洲AV无码| 我爱ava| 欧美日韩性生活| 久久久黄色| 精品91九九久久久| 亚洲天堂综合啪啪|